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The accuracy of the least squares method in the isotope dilution analysis is studied using two 
models, viz. a model of a two-parameter straight line and a model of a one-parameter straight line. 
The equations for the direct and the inverse isotope dilution methods are transformed into linear 
coordinates, and the intercept and slope of the two-parameter straight line and Ihe slope of the 
one-parameter straight line are evaluated and treated. 

Isotope dilution, which forms the basis of the various methods of isotope dilution 
analysis, can in some instances be described by a linear function 1 •2 , and the analysis 
then can be evaluated by making use of the linear least squares method. Since this 
approach requires that data must be measured for a number of points of the isotope 
dilution function, this way of performing and evaluating the analysis can be classed 
as a method of multiple isotope dilution. The methods of single or double isotope 
dilution then can be looked upon as particular cases of the multiple isotope dilution 
approach in which one or two points of the transformed isotope dilution function 
are used for the evaluation. 

THEORETICAL 

In the least squares method3 applied to a two-parameter straight line equation 

(1) 

where k = pO, pI, ... , pen - 1) are members of a set of n non-negative integers, 
the intercept a is calculated as 

(2) 

The determination of the straight line intercept by formula (2) will be referred to as 
procedure 1. 
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The slope of the two-parameter straight line b is calculated as 

(3) 

This procedure for parameter determination will be referred to as procedure 2. 

For a one-parameter straight line 

Yk = PXk (4) 
the slope P is calculated by the least squares method4 as 

(5) 

This way of determining the parameter value will be referred to as procedure 3. 

The relative standard deviation of the parameter c = a, b, or P in dependence on 
ZI< = XI< or Yk, if the relative deviations (jZk/Zk are mutually independent, can be 
expressed by equation3 

(6) 

The mean relative standard deviation of the determination of c is 

(7) 

where (} is the number of repetitions of the analysis. 

The direct isotope dilution can be expressed by the equationS 

(8) 

where x is a constant, viz. the amount of the nonradioactive substance to be deter­
mined, y' kS are variable, known amounts of the same radioactive substance, which 
are isotope diluted with the nonradioactive substance, and ik is 

(9) 

the degree of isotope dilution defined as the ratio of the specific activities of the sub­
stance before (so) and after (Sk) the isotope dilution, or as the ratio of activities of equal 
quantities of the substance before (Ao) and after (Ak) the isotope dilution. The latter 
alternative is of practical importance for a quantitative separation reaction using 
constant amounts of reagent1 •6 • This alternative also will be considered by us, which 
is a simplification of the problem in the sense defined by Eq. (9). 
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Theoretical Accuracy of the Least Squares Method 807 

Coordinate pairs (Yk' Sk) or (y." All) will be regarded as a set of points, or in parti­
cular, as the k-th point of the isotope dilution function which can be expressed in an 
equivalent way by means of the degree of isotope dilution (9), (Yk' ik), if (Yo = 0, 
io = 1), or by means of coordinates (Yk' ik - 1), if the point (Yo = 0, ik - io = 0) 
lies in the origin of the linearized coordinate system (Xk' Yk ). 

In the inverse isotope dilution method, a constant amount of the radioactive sub­
stance x is diluted with variable amounts y., of the same nonradioactive substance; 
thenS 

(10) 

In the linear coordinates Xk = ik , Yk = 11Yk' Eq. (8) can be written as 

11Yk = -1/x + (1/x) ik , (11) 

hence, a = -1/x, b = 1/x. Thus, x can be calculated by procedure 1 (Eq. (2)) as 

Applying procedure 2 we have analogously from Eq. (3), 

In the linear coordinates X k = i k , Yk = Yk' Eq. (10) can be expressed as 

Yk = -x + Xik 

whence, by procedure 1 (a = -x), 

and by procedure 2 (b = x), 

(12) 

(13) 

(14) 

(15) 

(16) 

Using points (Yk' ik - 1) and transformations Xk = ik - 1, Yk = 11Yk' Eq. (8) 
acquires the form 

11Yk = (1/x) (ik - 1), (17) 

for which, by procedure 3 (P = 1/x), 

(18) 
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Similarly, in the coordinate system Xk = ik - 1, Yk = Yk' Eq. (10) can be trans­
formed into 

Yk = x(ik - 1), (19) 

or which procedure 3 (p = x) affords 

(20) 

Particular Cases 

In Eqs (12) and (15), where x is calculated by procedure 1, the ik quantity stands in the numerator 
and in the denominator in the same power. Consequently, the set of i values for the n points of the 
isotope dilution function with the coordinates ip1 ' ip2 , ... , ipn can be replaced by a set of their 
e-fold multiples, eip1' eip2, ... , eipll, without altering the value of x. We can choose e = 1 (so or 
e = l/Ao, which are constants, and so their values need not be determined. Eq. (12) then can 
be written as 

x = [n "j)/s~ - (~)/Sk)2]/D)/Sk ~)/(SkYk) - '2)/Yk ~)/sn = 

= [n 2)/A~ - (~)/AkY]/D)/Ak ~)/(AkYk) - "[)/Yk ~)/A~] . (21) 

In the particular case of two points (n = 2) with the coordinates (Yp. sp) and (Yq, Sq) or (Yp. Ap) 
and (Yq , Aq), Eq. (21) reduces to 

known to be valid for the method of double direct isotope dilution7 • 

Similarly. Eq. (15) reduces to the relation 

used in the method of double inverse isotope dilutions. 

(23) 

In the same manner. Eqs (18) and (20), obtained as special cases of Eq. (5). reduce to the initial 
relations (8) and (10). 

Studying the precision of the direct and inverse multiple isotope dilution methods 
we can employ the relative standard deviation relation (6), which for x = x(Yk' ik ) 

can be expressed as 

Srx = {I[(a In x)/(a In Yk»)2 (bYk/Yk)2 + 

+ I[(a In x)/(a In i k»)2 (Mk/ikYP/2 , (24) 

or we can make use of the mean relative standard deviation of the parameter (7). 
This deviation can be regarded as the deviation from the true x value. Suppose, for 
simplicity, that (a) (! = n, (b) bik/ik ~ bYk/Yk' the latter deviation being negligible 
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Theoretical Accuracy of the Least Squares Method 

and (c) c5ik/ik = Sri = const. Then we can write (7) and (24) as 

since according to (9), 

(c5AjA = Ij.jN where N is the number of disintegrations counted). 

Error of Analysis in Procedure 1 

Differentiating Eq. (12), 

oxjoik = (2nik - 2IA)/cfA IA/Yk - ~)~ '2)/Yk) -

- [n Li~ - (Lik?] [Lik / Yk + (1/ Yk) Lik -

-2ik Ll/Yk]/(Lik IA/Yk - ~)~ Ll/Yk)2 . 

809 

(25) 

(27) 

This relation can be modified with respect to Eqs (8) and (12) (if the deviations from 
the true x value are regarded, then the values of x in Eqs (8) and (12) are identical): 

(28) 

[(0 In x)/(o In ik)]2 = [(ox/oik ) {ik/X)]2 = 
= [i~(Li~)2 - 2i~ Li~ Lik + i:(Lik )2]/[ n Li~ - (LikY]2 . (29) 

The mean error of analysis, with regard to Eqs (25) and (29), is 

Srs = {[(LiD3 + (Lik)2 Li: - 2Lik Li~ Li~r/2/[n Li~ -
- (~)k)2]} (l/.jn) Sri (30) 

and the relative standard deviation of analysis is 

(31) 

According to relation (15), 

ox/oik = [L;ikYk + Yk ~)k - 2ik LYk]j[ n Li~ - (~)k)2] -

- [Lik LikYk - LYk Lin [2nik - 2Lik]/[nLi~ - (Lik)2]2 (32) 

Coliection Czechoslovak Chem. Commun. [Vol. 491 (1984) 



----------------

810 Klas: 

which can be further modified with regard to Eqs (10) and (15) to give 

(33) 

Comparing the partial derivatives (28) and (33) we find them identical in their ab­
solute value. Hence, the relative errors of analysis obtained by procedure 1 applying 
relations (12) and (I5) for the multiple direct and multiple inverse isotope dilution can 
both be expressed by Eq. (30). 

Error of Analysis in Procedure 2 

From Eq. (13), 

ax/aik = (2nik - 2IA)/(n IA/h - 2)k I)/Yk) -

- [n/Yk - ~)/Yk] [n 2)~ - (2)k)2]/[n IA/Yk - Iik ~)/Yk]2, (34) 

which with regard to Eqs (8) and (13) can be reduced to 

(35) 

and consequently, 

Inserting relation (36) in Eq. (25) we obtain 

Srx = {[Ii~(Iik)2 + n2 Ii: - 2n Iik 2)~J1/2/[n 2)~ -

- (2)k)2]} (l/v'n) Sri. (37) 

Eq. (16) gives 

ox/oik = (nYk - IYk)/[ n Ii~ - (Iik)2] - [n IikYk -

- Iik IYk] [2nik - 2 2)k]/[ n ~)~ - (Iik)2]2 , 

which can be rearranged by means of Eqs (16) and (10) to give 

(38) 

(39) 

The absolute values of the partial derivatives (35) and (39) are identical, hence, 
the relative error of analysis evaluated by Eqs (13) and (16) will be equal to (37). 
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Theoretical Accuracy of the Least Squares Method 

Error of Analysis in Procedure 3 

According to Eqs (18) and (8), 

811 

ox/oik = 2{ik - 1)/[I(ik - 1)/Yk] - [I(ik - 1)2/(Yk)]/[I(ik - 1)/Yk]2 = _ 
= x(ik - 1)/[I(ik - 1)2] , (40) 

whence 

According to Eqs (25) and (41), 

Applying relation (20) and with regard to Eq. (10), 

ox/oik = Yk/[I(ik - 1)2] - [2(ik - 1) IYk(ik -
- 1)]/[I(ik - 1)2]2 = -x(ik - 1)/[I(ik - 1)2] . 

(41) 

(42) 

(43) 

The absolute values of the partial derivatives (40) and (43) being equal, the error of 
analysis in procedure 3 for the multiple direct and multiple inverse isotope dilution 
according to Eqs (18) and (20) can be expressed by the same relation, viz. Eq. (42). 

Particular Cases 

If x is to be determined by Eqs (22) and (23), then a minimum of two different nonzero points are 
necessary. At n = 2, ~)k = ip + iq, Li~ = i~ + i~, etc., and the mean relative square error of 
determination, which in this case is identical with the relative standard deviation, can be written 
according to Eq. (30) as 

(44) 

This equation expresses the error of the double isotope dilution methods due to inaccuracies 
in the radioactivity measurements9 • 

For the single determination by means of Eqs (8) and (10), at least one point is necessary (the 
second point is implicit in the equation and lies in the coordinate origin); then ~)k = ik, L(ik -
- 1) = ik - I, and the relative error of analysis, identical with the relative standard deviation, is 
according to (42) 

(45) 

This equation gives the error of analysis due to the inaccuracy in the radioactivity measurements 
in the simple direct or inverse isotope dilutions. 

The mean relative standard deviation of analysis in procedures 1, 2, and 3 are 
given in Table I (data for Table I are summarized in TabJe II). 
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TABLE I 

Mean relative standard deviations of analysis sU' in % (sri = 1%), in procedures I, 2 and 3 
according to Eqs (30), (37) and (42) 

Points selected Deviations for procedure 

from the Table II 
2 3 

1,2,3 205a 205 98-0 
4,5,6 21-7 21-0 10-2 
7,8,9 3-41 2-69 1-41 
0,10,11 1-47 0-736 0-603b 

0,10,11,12 1-47 0-550 0-419b 

0,10,11.12,13 1-47 0-439 0-320b 

0,10,11,12,13,14 1-46 0-366 0-259b 

10,11,12 4-41 1-099 0-484 
10,11,12,13 3-68 0-743 0-358 
10,11,12,13,14 3-31 0-559 0-284 
11,12,13 9-60 1-486 0-427 
11,12,13,14 6-79 0-950 0-323 
12,13,14 16-1 1-88 0-398 
15,16,17 2-17 _ 103 21-0 0-337 
18,19,20 2-05 _ 105 205 0-334 

a At high errors the analyses have no real meaning; b point 0 is included in the isotope dilution 
function, the values are calculated for io -7 1 + O. 

TABLE II 

Values of the degree of isotope dilution ik in the various points k of the isotope dilution function 
(Yk' i k) 

k i .. 

o 11 5 
1 1-001 12 7 
2 1-003 13 9 
3 1-005 14 II 
4 1-01 15 101 
5 1-03 16 103 
6 I-OS 17 105 
7 I-I 18 1001 
8 1-3 19 1003 
9 1-5 20 1005 

10 3 
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Theoretical Accuracy of the Least Squares Method 813 

Have a function 

(46) 

It can be proved that 

lim ncp = f( i p , iq) 
n"'OO 

where f(ip, iq) = const for the fixed limit values of the isotope dilution degree, 
ip = ip1 < ip2 < ... < ipn = iq. The proof will be given for procedure 3. For n -+ 00, 

the sum can be replaced by an integral by the Monte Carlo method1o, 

(48) 

Eqs (42), (46), (47) and (48) give 

n-+oo n-+oo 

= [J::i2(i - 1)2di/J::diJ/
2
/J::(i - 1)2di/J::di] = 

= {[18(i~ - i~) - 45(i: - i!) + 30(i~ - i;)] (iq -

- ip)j10}1/2j[(iq - ip)3 - 3(iq - ip)2 + 3(iq - ip)] = f3(ip, iq). (49) 

As ip approaches iq , ~)~(ik - 1)2 -+ ni~(iq - 1)2, I(ik - 1)2 -+ n(iq - 1Y, and 

lim f3(ip, iq) = iqj(iq - 1) . (50) 
Ip"'lq 

The nearing of the cp and ncp functions to their limiting values with increasing n, 
for procedures 1,2, and 3, is shown in Table III. The limit values for the three proce­
dures are given in Tables IV - VI, respectively. By means of these limits, for a suffi­
cient number of points of the isotope dilution function, the errors of analysis can be 
expressed, with a sufficient accuracy, by the simple equations 

(51) 

(52) 

It is seen from Table III that for ip = 3, iq = 4, and n = 3, f3(ip, iq) = 1'44, and 
for 11 ~ 21,f3(ip, iq) = 1'42; hence, a number of n ~ 3 can be regarded as sufficient 
for the conditions in question. 
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DISCUSSION 

The accuracy of the least squares method in the isotope dilution analysis was studied 
within the scope of two models: a model of a two-parameter straight line (1) and 
a model of a one-parameter straight line (4). The isotope dilution process was trans­
formed to linear coordinates, and the intercept of the two-parameter straight line 
was determined by procedure 1, the slope of the two-parameter straight line was 
determined by procedure 2, and the slope of the one-parameter straight line was 
determined by procedure 3. 

Two major simplifications were adopted: first, the radioactivity measurements 
on all the samples were assumed to have the same relative standard deviation, hence, 
(ji/i = Sri = const, and second, the inaccuracy in the radioactivity measurements 
was assumed to exceed greatly that in the amounts of the substance added, hence, 
(ji/ i ~ (j y/ y, the radiometric error constituting the principal source of statistical 
error in the isotope dilution analysis. In identical conditions (identical set of degrees 
of isotope dilution, identical relative error of radioactivity measurements, and identi­
cal procedure for data evaluation), the accuracy of the multiple direct isotope dilu­
tion analysis methods is equal to that of the multiple inverse isotope dilution analysis 

TABLE III 

Values of the function rp = srx/sri and nrp in procedures I, 2 and 3 on the interval i e <3, 4 > 
according to Eqs (30), (37) and (42). respectivelya 

Number of rp nrp 
points 

n 2 3 2 3 

3 9·90 2·89 0·480 29·7 8·66 1·44 
6 5'94 1·72 0·238 35·6 10'3 1-43 

11 3·50 1·01 0·130 38·5 11·1 1·43 
21 1·92 0·554 0·068 40·3 11·6 1·42 
51 0·812 0·235 0·028 41·4 12·0 1·42 

101 0·414 0·120 0·014 41·8 12·1 1·42 
201 0·209 0·060 0'007 42·1 12·1 1·42 
501 0·084 0'024 0·003 42·2 12'2 1·42 

1001 0·042 0·012 0·001 42·2 12·2 1·42 
2001 0·021 0·006 0·001 42·2 12·2 1·42 
5001 0·008 0·002 0'000 42·3 12·2 1·42 

10 001 0·004 0·001 0'000 42'3 12·2 1·42 
00 0 0 0 42'3 12·2 1'42 

a Uniform division of the interval (ip = 3, iq = 4) by the number of points n - 2 (two points 
are the end ones). 
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methods, and the mean relative standard deviation of analysis can be expressed by 
Eqs (30), (37), and (42). The same conclusions were found to apply to the single and 
double isotope dilution methods even if the inaccuracy in the substance additions 
was taken into account5 •9 . 

In procedure 1, in contrast to procedures 2 and 3, the data of the isotope-undiluted 
sample need not be known, which allows the experimenter to use higher quantities 
of the substance. The double isotope dilution methods are a particular case of proce­
dure 1 using two points of the isotope dilution function with different, nonzero isotope 
dilutions. The single isotope dilution methods are a particular case of procedure 3, 
a single point of the isotope dilution function (Yk' ik - 1) being used for the determi­
nation. 

If a sufficiently high number of points of the isotope dilution function are available, 
with a constant value of the relative error of the activity measurements (Sri = .J2 . 
. t5A/A = const), the accuracy of the analysis depends on the function f(ip, iq), 
ip and iq being the lower and upper limits of the sequence of the degrees of isotope 
dilution. It follows from Tables IV - VI that for finite values, the order for procedures 
1, 2, and 3 is 

The accuracy of the procedures decreases in the reverse order (Table I). 

TABLE V 

Values of fUp ' iq) for procedure 2 (see Eqs (51) and (52» 
-~--~ 

",. 
" lp 2 3 4 5 6 7 8 9 10 100 1000 ''lJ . "-

lq '" 

1 00 

2 5'37 00 

3 3·71 8·76 00 

4 3·18 5'37 12·2 00 

5 2·92 4·26 7·06 15·7 00 

6 2·77 3·71 5'37 8·76 19·1 00 

7 2'67 3'39 4·53 6·49 10'5 22'6 00 

8 2·W 3·18 4'04 5'37 7-62 12·2 26·0 00 

9 2·55 3·03 3·71 4·70 6·21 8·76 13·9 29·5 'lJ 

10 2·51 2·92 3·49 4·26 5'37 7·06 9·91 15·7 32·9 00 

100 2·22 2·25 2·28 2'31 2'34 2'37 2·40 2-44 2·47 2·51 00 

1000 2·19 2·20 2·20 2·20 2'20 2·21 2·21 2·21 2·22 2·22 2·51 00 

00 2·19 2·19 2·19 2·19 2·19 2·19 2·19 2·19 2·19 2·19 2·19 2·19 00 

The lowest value is fUp ' iq) ~~ fUp ' cq = 2·19. 

Collection Czechoslovak Chern. Commun. [Vol. 49J [1984J 



Theoretical Accuracy of the Least Squares Method 817 

In procedure 1, /1(iP' iq) increases without bounds with ip increasing within the 
interval 1 ~ ip ~ iq • As iq is varied over the region of ip ~ iq < 00, the function 
passes from CX) over a minimum to 00. The minima lie approximately at (ip, iq) ~ 
~ (1, 3), (2,6), (3,9), (4, 10), etc.; the value of the function in the minima increases 
without bounds with increasing arguments, starting from the lowest value of 6·60 
which is the optimum value for the analysis. (Other values on the line of minimum 
are approximately equal to ip . 6·60.) This increase can be explained in terms of the 
fact that as in procedure 1 the (ip, iq) values increase, the result of analysis is deter­
mined from an increased distance from the origin of the coordinate system. The 
accuracy of analysis may not be improved if the number of points is increased 
(Table I, arrows 4,5,6). The relative standard deviation of analysis (Eq. (52)) decreases 
proportionally to 1/Jn, but/1(ip, iq) can increase more rapidly than In, and so the 
overall effect can be an enhanced error; for instance (Table IV), /1(2,8) = 13·5, 
whereas /1(2, 100) = 78·3. To compensate for the increase in the error of analysis, 
the number of points of the isotope dilution function would have to be increase 
approximately 34 times. Since for ip -. iq we have lim/(ip, iq) = 00, the analysis 

TABLE VI 

Values of fUp.iq) for procedure 3 (see Eqs (51) and (52» 
, " . -~ 1·1 2 3 4 5 6 7 8 9 10 100 1000 CIJ 
ql 

CIJ" 

I-I 18-6b 11-0c 

2 3-05 2-90 2-00 
3 2-19 2-14 1·72 1·50 
4 1·91 1·87 1-61 1-42 1·33 

5 1·76 1·74 I-55 1·39 1·30 1-25 
6 1·68 1·66 1- 51 1·38 1-29 1·23 1·20 
7 1-62 1-61 1·49 1-37 1·28 1-22 1-19 1-17 
8 1·58 I-57 1·47 1·37 1·28 1·22 1·18 1-16 1·14 
9 1·55 I-54 1·45 1-36 1·29 1-23 1·19 1·16 1-14 l-l2 

10 I-53 I-52 1·44 1·36 1·29 1-23 1·19 1·16 l-13 1-12 1·11 
100 1-36 1-36 1-35 1·34 1·34 1-33 1-32 1-32 1-32 1·31 1·30 1-01 

1000 1·34 1-34 1·34 1·34 1·34 1·34 1-34 1·34 1-34 1-34 1-34 1·28 1-00 
CIJ 1-344 1-34 1-34 1·34 1-34 1-34 1-34 1·34 1-34 1-34 1·34 1·34 1-34 1·00" 

" lim fUp. iq) = CIJ; b the values in the column are lim fUp. iq); C the diagonal values are 
ip ...... iq ...... l i p "" 1 +0 
lim fUp. iq) = iq/Uq - 1); 4 lim fUp• iq} = .../(18/1O} = 1-34: e lim fUp• iq) = 1. 

ip ...... iq iq ..... IX) ip .... ip .... 00 
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cannot be evaluated by procedure 1 base on a single point of the isotope dilution 
function. The advantage of procedure 1 against procedurse 2 and 3, is that H, how­
ever procedure 1 does not require the knowledge of the So or Ao values is offset to 
an extent by the lowered accuracy of analysis. 

In procedure 2, the function !iip, iq) increases withiut bounds with increasing 
ip E (1, iq) and decreases monotonically down to 2·19 with increasing iq E (ip, (0) 
(Table V). The accuracy remains unaffected by replacement of the iph ip2 , ... , iPR 
sequence by its e-fold multiple, eipl' eip2' ... , eipn" Since!2(ip -. iq) -. 00, the analysis 
cannot be evaluated based on a single point of the isotope dilution function. For an 
optimum evaluation, the minimum ip and maximum iq values should be chosen, 
but only a small improvement (about 1·3 times) in the accuracy is achieved at iq > 5. 

In procedure 3, !3(ip, iq) approaches a limit of iq/(iq - 1) with ip -. iq;ip E (1, iq) 
(Table VI). As the iq E (ip, (0) is increased'!3 decreases form the above value down 
to a value of l' 34; at ip > 3. the function passes through minima whose coordinates 
are approximately (ip, iq) ~ (4, 7), (5, 7), (6, 8), (7, 9), (8,10), etc. The!3(ip, iq) values 
in the minima decrease in the range of 1·28 to 1'13, and decrease further to the absolu­
tely lowest value of !(ip, iq) = J. The local minima, then, are not very deep and the 
decrease in the !3(ip, iq) value is statistically insignificant from the analytical point 
of view. The analysis can also be evaluated based on a single point of the isotope 
dilution function because for ip -+ iq, lim !3(iP' iq) = iq/(iq - 1). The least squares 
method then reduces to the single isotope dilution method. If the analysis corres­
ponding to this point is repeated n times (i.e., both the Ao and the Aq activities are 
measured n times), the accuracy of determination of x by the least squares method 

and by the method of single isotope dilution using the average iq = Ao/Aq will be 
identical ( see below). 

In procedure 3, the isotope dilution function linearizes also in the reversed coordi­
nates (Xk -+ Yk, Yk -. Xk); then in Eqs (4) and (5), P is substituted by l/P, and for 
the direct isotope dilution, Eq. (18) is replaced by x = (I(ik - l)/Yk)/I(1/yD, and 
for the inverse isotope dilution, Eq. (20) is replaced by x = IY~/LYk(ik - 1). 
The absolute values of the partial derivatives ox/oik in the two cases are expressed 
by relation (40) and the error of analysis is expressed by Eq. (42), s-imilarly as when 
Eqs (18) and (20) hold true. 

In procedure 3 with ip ~ 2, the relative standard deviation of analysis can be ap­
proximated by 

Srx = [(1'5 ± 0'5)/JnJ Sri' (53) 

the statistical significance of results being the same on a confidence level of ex = 0·05. 

An advantage of the least squares method using n different points of the isotope 
dilution function over the method using n times one and the same point of the func-
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tion lies in the possibility of verifying the linearity of the isotope dilution function 
(in the coordinates in question). This linearity is an a priori condition for obtaining 
accurate x values in all the above procedures and variants of isotope dilution analysis. 

Apart from the least squares approach, the more accurate but also more sophisti­
cated approach of the maximum likelihood method1o can be applied; lower values 
of the f(i p , iq) function should then emerge. However, procedure 3 affords values 
which are sufficiently near to the absolute minimum value, which is unity (Table VI). 

The Sri value, which is a significant parameter describing the accuracy of the result 
of analysis, was regarded constant. Other assumptions as to the accuracy of the 
activity measurements in relation to the accuracy of analysis can be found in 
papers 11.12. A value of Sri = 1% is obtained, for a negligible background, if 20000 
disintegrations are counted for either of the (Ao, Ak ) pair, because then Sri = 

= [(1/20000) + (1/20000»)1/2. If the measurements are carried out n times for 

a pair (Ao, Aq), the degree of isotope dilution being determined as iq = Ao/Aq, then 
the relative standard deviation of the determination of the degree of isotope dilution is 

(54) 

If, then, x is determined for the iq value by the single isotope dilution method, the 
error of analysis, Eq. (45), is 

(55) 

The error is statistically equal to that obtained in procedure 3 by using the least 
squares method (see above). 

If, on the other hand, a single measurement is made of Ao, whereas Aq is measured 
(2n - 1) times (the total number of measurements of the (Ao, Aq) pair is n), then 

(56) 

for n -+ 00, bi/i = ()(2)/2) Sri and Srx = [iq/(iq - 1)] ()(2)/2) sri' Hence, this overall 
n-fold measurement of the Ao, Aq activities has an insignificant effect; the error of 
analy~is is not lower than 0·7 times that obtained from a single measurement of Ao 
and A q . 

The above procedures do not cover all the conceivable variants for isotope dilution 
analysis 13. The aim of this study was also to introduce a mathematical approach, 
which can be of importance for the clasification of the isotope dilution methods. 

T/umkJ are due to Dr T. Lip/oj for valuable diJcIIJJion and aJ.liJtance in the calculations of the 

m/lll'.\ lor Table III. 
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UST OF SYMBOLS 

Xk' Yk 

a, b, P= c 
k = pO,pl, ... ,p(n - 1) 

oZk/Zk 

coordinates of straight lines Yk = a + bXk or Yk = PXk 

straight line parameters (regression coefficients) 
a set of n non-negative integers 
relative deviation of Zk(Zk = Xk' Yk , Yk' ik , AI<' sk) 
relative standard deviation of c (c = x, i) 

mean relative standard deviation of c 
number of repetitions of analysis 

Klas 

amount of substance to be determined (x = -a, -I/a, b, I/h, p, lIP) 
variable amounts of substance analyzed (ik = !(Yk» 

.; 
N 
rp = sn/Sri 
lim nrp = !(ip, iq) 

n'" 00 

p,q 
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