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The accuracy of the least squares method in the isotope dilution analysis is studied using two
models, viz. a model of a two-parameter straight line and a model of a one-parameter straight line.
The equations for the direct and the inverse isotope dilution methods are transformed into linear
coordinates, and the intercept and slope of the two-parameter straight line and the slope of the
one-parameter straight line are evaluated and treated.

Isotope dilution, which forms the basis of the various methods of isotope dilution
analysis, can in some instances be described by a linear function!'2, and the analysis
then can be evaluated by making use of the linear least squares method. Since this
approach requires that data must be measured for a number of points of the isotope
dilution function, this way of performing and evaluating the analysis can be classed
as a method of multiple isotope dilution. The methods of single or double isotope
dilution then can be looked upon as particular cases of the multiple isotope dilution
approach in which one or two points of the transformed isotope dilution function
are used for the evaluation.

THEORETICAL
In the least squares method® applied to a two-parameter straight line equation

Y, = a + bX, , (1)

where k = p0, p1, ..., p(n — 1) are members of a set of n non-negative integers,
the intercept a is calculated as

a= (XY XXi - YX X W) /[ X8 — (XX)?] (2)

The determination of the straight line intercept by formula (2) will be referred to as
procedure 1.
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The slope of the two-parameter straight line b is calculated as

b= (nIX,Y - YX YY) TXE - (TX)7]. ()

This procedure for parameter determination will be referred to as procedure 2.

For a one-parameter straight line

Y= ﬁxk (4)
the slope B is calculated by the least squares method* as
B = ZXkYk/ZXi . (5)

This way of determining the parameter value will be referred to as procedure 3.

The relative standard deviation of the parameter ¢ = a, b, or f§ in dependence on
Z, = X, or Y,, if the relative deviations 6Z,/Z, are mutually independent, can be
expressed by equation®

see = [2(01n ¢f0In 2 (62/2)°]'7* = [Z(s2]"* ©®

The mean relative standard deviation of the determination of ¢ is

See = [X(seehfe]? @)

where g is the number of repetitions of the analysis.

The direct isotope dilution can be expressed by the equation®
x = ylix = 1), (8)

where x is a constant, viz. the amount of the nonradioactive substance to be deter-
mined, y’,s are variable, known amounts of the same radioactive substance, which
are isotope diluted with the nonradioactive substance, and i is

Iy = So/sk = AO,/Ak s (9)

the degree of isotope dilution defined as the ratio of the specific activities of the sub-
stance before (so) and after (s,) the isotope dilution, or as the ratio of activities of equal
quantities of the substance before (4,) and after (4,) the isotope dilution. The latter
alternative is of practical importance for a quantitative separation reaction using
constant amounts of reagent!*6. This alternative also will be considered by us, which
is a simplification of the problem in the sense defined by Eq. (9).
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Coordinate pairs (yy, s;) or (y,, 4,) will be regarded as a set of points, or in parti-
cular, as the k-th point of the isotope dilution function which can be expressed in an
equivalent way by means of the degree of isotope dilution (9), (y, i), if (Yo = 0,
io = 1), or by means of coordinates (y,, i, — 1), if the point (Y, = 0, i, — i, = 0)
lies in the origin of the linearized coordinate system (X,, Y;).

In the inverse isotope dilution method, a constant amount of the radioactive sub-
stance x is diluted with variable amounts y, of the same nonradioactive substance;
then®

x = y/(i = 1). (10)
In the linear coordinates X, = iy, Y, = 1/y,, Eq. (8) can be written as
Uy = =1/x + (1/x) i, (11)
hence, a = —1[x, b = 1/x. Thus, x can be calculated by procedure 1 (Eq. (2)) as
x = [n 32 = (S Ui Sidve — Tt Td). (12)
Applying procedure 2 we have analogously from Eq. (3),
x = [n 38 = (Ti?(n Tielye = T X1 (13)
In the linear coordinates X, = iy, Y, = y,, Eq. (10) can be expressed as

Yo = —X + Xiy (14)

whence, by procedure 1 (a = —x),

x = (Tie Tion = Yo TiD)[n T8 — (S)] (15)
and by procedure 2 (b = x),

x = (n Tiwve = T To)lln T8 — (L] (16)

Using points (y,, i, — 1) and transformations X, = i, — 1, Y, = 1/y,, Eq. (8)
acquires the form

1y = (1/x) (ik = 1), (17)
for which, by procedure 3 (8 = 1/x),

x =Y (i — 1°[[X(k — 1)/ (18)
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Similarly, in the coordinate system X, = i, — 1, Y, = y,, Eq. (10) can be trans-
formed into

ye = x(ix, — 1), (19)

or which procedure 3 (B = x) affords

x = [Xndic = DI2Ge = 1. (20)

Particular Cases

In Eqs (12) and (15), where x is calculated by procedure 1, the i, quantity stands in the numerator
and in the denominator in the same power. Consequently, the set of i values for the n points of the
isotope dilution function with the coordinates Ip1s Bp2s oo ipn can be replaced by a set of their
&-fold multiples, iy, §iy,5, ..., &iy,,, Without altering the value of x. We can choose ¢ = 1/sq or
& = 1/A,, which are constants, and so their values need not be determined. Eq. (12) then can
be written as

x = [nX1sc = (CUs? X s X (swrd) = X1/ve X1 5] =
= [n 2148 — (XA VIE A Z1/(Awyi) — X1y X1/AL] - (21)

In the particular case of two points (n = 2) with the coordinates (y,, s,) and (¥, s) or (¥, 4p)
and (y,, 4,), Eq. (21) reduces to

X = Yp¥q(Sq = 5p)[(Sp¥q = Sa¥Vp) = YpVa(Aq — A)(4pyq — Agyy) (22)

known to be valid for the method of double direct isotope dilution’.
Similarly, Eq. (15) reduces to the relation

x = (yPsP - yqsq)/(sq - sp) = (ypAp - quq)/(Aq - Ap) (23)

used in the method of double inverse isotope dilution®.

In the same manner, Eqs (/8) and (20), obtained as special cases of Eq. (5), reduce to the initial
relations (8) and (10).

Studying the precision of the direct and inverse multiple isotope dilution methods
we can employ the relative standard deviation relation (6), which for x = x(y,, i,)
can be expressed as

s = {Z[@ In x)/(@ 1n y )T (Grfy)? +
+ Y[ In x)/(0 In i,)]* (Sinfir)*}?, (24)
or we can make use of the mean relative standard deviation of the parameter (7).

This deviation can be regarded as the deviation from the true x value. Suppose, for
simplicity, that (a) ¢ = n, (b) 8iy[iy > 6y,/y\. the latter deviation being negligible
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and (c) 8iy[i, = s,; = const. Then we can write (7) and (24) as

Sex = (1/3/n) {X[(0 n x)/(8 In §)]*}/2 s (25)
since according to (9),
sei = [(8s0/s0)* + (8su/s)*]""? = [(840/Ao)* + (94i/AL)*]"* (26)

(64/A = 1/\/N where N is the number of disintegrations counted).

Error of Analysis in Procedure 1
Differentiating Eq. (12),
0x[0iy, = (2niy, — 2 0)|(Six Yie/yvi — Yit Y1/y) —
= [n 2 = (X)) [Xi/yi + (1nd i —
=2 Yy J[(Ci Tiye — Tik X1/ (27)

This relation can be modified with respect to Eqs (8) and (12) (if the deviations from
the true x value are regarded, then the values of x in Eqs (8) and (12) are identical):

9x[0i, = x(ix i — Li)[n Xix = (Xi)’] (28)
[(@1n x)/(21n i,)]* = [(0x/di) (ik]x)])* =
= [R(Xi)? — 26 Yic Yie + 6(X0)"1/[n Zik - (X0)*]* . (29)
The mean error of analysis, with regard to Egs (25) and (29), is
S = {[(Z5)° + (Xi)* Tik — 2%h Yk Y] "?/[n Tk —
= (Zi]} (/) su (30)
and the relative standard deviation of analysis is

Sex = /(1) Sex (31

According to relation (15),

0x[0iy = [Yiye + Y Lix — 2ik Y. 0]/[n 2’92( - (Yi)?*] -
= [Zik Zikyk - Z)’k 2112:] [Z"ik - 2Zik]/[nzii - (Zik)z]z (32)
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which can be further modified with regard to Egs (10) and (15) to give

ox[oi, = x(Xiz — i Yi)[n Yiz — (Ci)*] -

(33)

Comparing the partial derivatives (28) and (33) we find them identical in their ab-
solute value. Hence, the relative errors of analysis obtained by procedure 1 applying
relations (12) and (I15) for the multiple direct and multiple inverse isotope dilution can

both be expressed by Eq. (30).
Error of Analysis in Procedure 2
From Eq. (13),

0x[0i, = (2ni, — 2Y i )/(n Yix/ye — Yix D1/yy) —
= [y = 210 [0 Xik = i)’ [n iy = Tie 21/0]? s

which with regard to Egs (8) and (13) can be reduced to

0x/(0i, = x(niy, — Yi)/[n Yit — (Ti)*],

and consequently,

[(@In x)[(@n ,)]* = [n%if + i&(Ti)? — 2ni} Yi)/[n YiE — (Ti)*]?.

Inserting relation (36) in Eq. (25) we obtain

5o = {iCCi)* + n2 Yig — 2n Y0 Y iR Y2 [n Yk —
= (Xiu)’T} (//n) sei -

Eq. (16) gives

ax/aik = ("Yk - ZYk)/[” Z‘z - (Zik)z] - [” Yk —
= Yix Y] [2nie — 2 Y0 ]/[n Yik — i) T,

which can be rearranged by means of Eqs (16) and (10) to give

ox[0i, = x(Xi, — ni)[n Yii — Ci)*].

(39)

(35)

(36)

€

(38)

(39)

The absolute values of the partial derivatives (35) and (39) are identical, hence,

the relative error of analysis evaluated by Egs (13) and (16) will be equal to (37).
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Error of Analysis in Procedure 3

According to Eqgs (18) and (8),

ox[0iy = 2(i — DX = Dind = X0 — D)) — Dnd* = .
= x(i = D/[XG — 171, (40)
whence

[@n x)f(01n )] = k(i — 1?/[X (i — 1)°T*. (41)

According to Eqs (25) and (41),

= {[Xi( — 0?12/ — D1 (/) 5 - (42)

Applying relation (20) and with regard to Eq. (10),

ox[oi, = y [ (i — 1’1 = [2(i = 1) Inlis =
= DIk = 1)*]? = =x(i — DI = 1)7]. (43)

The absolute values of the partial derivatives (40) and (43) being equal, the error of
analysis in procedure 3 for the multiple direct and multiple inverse isotope dilution
according to Egs (18) and (20) can be expressed by the same relation, viz. Eq. (42).

Particular Cases

If x is to be determined by Eqs (22) and (23), then a minimum of two different nonzero points are
necessary. At n= 2, Yi, = i, + i, Tif = iZ+ i2, etc., and the mean relative square error of
determination, which in this case is identical with the relative standard deviation, can be written
according to Eq. (30) as

= [ipig/(Jig = i, DI s - 44)

This equation expresses the error of the double isotope dilution methods due to inaccuracies
in the radioactivity measurements®.

For the single determination by means of Eqs (8) and (/0), at least one point is necessary (the
second point is implicit in the equation and lies in the coordinate origin); then >4, = i, > —
— 1) = i, — 1, and the relative error of analysis, identical with the relative standard deviation, is
according to (42)

rx = /G — DYsg . (45)

This equation gives the error of analysis due to the inaccuracy in the radioactivity measurements
in the simple direct or inverse isotope dilution®.

The mean relative standard deviation of analysis in procedures 1, 2, and 3 are
given in Table I (data for Table I are summarized in Table I1).
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TABLE 1

Mean relative standard deviations of analysis §,,, in % (s,; = 1%), in procedures 1, 2 and 3

according to Egs (30), (37) and (42)

Points selected

from the Table II

Deviations for procedure

1 2 3
1,2,3 205° 205 980
4,5,6 217 210 102
7,8,9 3-41 2:69 1-41
0,10,11 1-47 0736 0-603°
0,10,11,12 1-47 0-550 0-419°
0,10,11,12,13 1-47 0-439 0-320°
0,10,11,12,13,14 1-46 0366 0-259°
10,11,12 4-41 1-099 0-484
10,11,12,13 3-68 0-743 0358
10,11,12,13,14 3-31 0-559 0-284
11,12,13 9:60 1-486 0427
11,12,13,14 679 0950 0-323
12,13,14 161 1-88 0-398
15,16,17 217.10° 21-0 0-337
18,19,20 2:05.10° 205 0-334

4 At high errors the analyses have no real meaning; b point 0 is included in the isotope dilution
function, the values are calculated for i, — 1 4 0.

TABLE I1
Values of the degree of isotope dilution 7, in the various points k of the isotope dilution function
s i)
k Iy k i,
0 1 11 5
1 1-001 12 7
2 1-003 13 9
3 1-005 14 11
4 1-01 15 101
5 1-03 16 103
6 1-05 17 105
7 1-1 18 1001
8 13 19 1003
9 1-5 20 1 005
10 3
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Have a function

ne = Nip[se; = /(1) Sex/S:i - (46)

It can be proved that
lim np = f(i,, i) (47)

n-— oo

where f(i,, i,) = const for the fixed limit values of the isotope dilution degree,
iy = iy < ipy < ... < iy, = iy The proof will be given for procedure 3. For n — oo,
the sum can be replaced by an integral by the Monte Carlo method!®,

lim 3 (i) = j f(l)dt/ j di. @)

n—ow k=pl
Eqs (42), (46), (47) and (48) give

lim (ng) = ]1m {n”z[sz(l = 125 (i = 1)*} =

n—oo

[Jre el fu] e
= {[18(i3 — i3) — 45(iq — ip) + 30(iq — i) (i —
— O IG, — 4F = i = )+ o= )] = Sl (49
As i, approaches iy, Y iz(i, — 1)* > ni2(iy — 1)% Y.(i, — 1)* > n(iy — 1)%, and
lim f3(i,, i) = ig/(ig — 1). (50)

ip—igq

The nearing of the ¢ and n¢ functions to their limiting values with increasing n,
for procedures 1, 2, and 3, is shown in Table III. The limit values for the three proce-
dures are given in Tables IV — VI, respectively. By means of these limits, for a suffi-
cient number of points of the isotope dilution function, the errors of analysis can be
expressed, with a sufficient accuracy, by the simple equations

Six = [f(ip’ iq)/”] Sei (51)
Sex = [f(ip’ iq)/\/n] Sri - (52)

It is seen from Table III that for i, = 3, i; = 4, and n = 3, f,(i,, iy) = 1-44, and
for n = 21, f3(i,, iy) = 1-42; hence, a number of n = 3 can be regarded as sufficient
for the conditions in question.
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DISCUSSION

The accuracy of the least squares method in the isotope dilution analysis was studied
within the scope of two models: a model of a two-parameter straight line (1) and
a model of a one-parameter straight line (). The isotope dilution process was trans-
formed to linear coordinates, and the intercept of the two-parameter straight line
was determined by procedure 1, the slope of the two-parameter straight line was
determined by procedure 2, and the slope of the one-parameter straight line was
determined by procedure 3.

Two major simplifications were adopted: first, the radioactivity measurements
on all the samples were assumed to have the same relative standard deviation, hence,
5i/i = s,; = const, and second, the inaccuracy in the radioactivity measurements
was assumed to exceed greatly that in the amounts of the substance added, hence,
dili > &y|y, the radiometric error constituting the principal source of statistical
error in the isotope dilution analysis. In identical conditions (identical set of degrees
of isotope dilution, identical relative error of radioactivity measurements, and identi-
cal procedure for data evaluation), the accuracy of the multiple direct isotope dilu-
tion analysis methods is equal to that of the multiple inverse isotope dilution analysis

TAaBLE 111

Values of the function ¢ = 5., /s,; and ng in procedures 1, 2 and 3 on the interval i e (3, 4)
according to Egs (30), (37) and (42), respectively?

Number of 1) ng
points

n 1 2 3 1 2 3
3 9-90 2-89 0-480 29-7 8:66 144
6 594 1-72 0-238 356 10-3 1-43
11 3-50 1-01 0-130 385 11-1 1-43
21 1-92 0-554 0-068 403 11-6 1-42
51 0-812 0-235 0-028 41-4 12-0 1-42
101 0-414 0-120 0014 41-8 121 1-42
201 0-209 0-060 0-007 42-1 121 1-42
501 0-084 0-024 0-003 42:2 12:2 1-42
1001 0-042 0-012 0-001 422 12-2 1-42
2001 0-021 0-006 0-001 42-2 12-2 1-42
5001 0-008 0-002 0-000 423 122 1-42
10 001 0-004 0-001 0-000 423 12-2 1-42
(o) 0 0 0 423 122 142

4 Uniform division of the interval =13, i = 4) by the number of points n — 2 (two points
are the end ones).
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methods, and the mean relative standard deviation of analysis can be expressed by
Egs (30), (37), and (42). The same conclusions were found to apply to the single and
double isotope dilution methods even if the inaccuracy in the substance additions
was taken into account®?,

In procedure 1, in contrast to procedures 2 and 3, the data of the isotope-undiluted
sample need not be known, which allows the experimenter to use higher quantities
of the substance. The double isotope dilution methods are a particular case of proce-
dure 1 using two points of the isotope dilution function with different, nonzero isotope
dilutions. The single isotope dilution methods are a particular case of procedure 3,
a single point of the isotope dilution function (y,, i, — 1) being used for the determi-
nation.

If a sufficiently high number of points of the isotope dilution function are available,
with a constant value of the relative error of the activity measurements (s,; = \/2 .
. 8A[A = const), the accuracy of the analysis depends on the function f(i, i,),
i, and i, being the lower and upper limits of the sequence of the degrees of isotope
dilution. It follows from Tables IV — VI that for finite values, the order for procedures
1,2, and 3 is

fl(ip’ iq) > fz(ip’ iq) > fB(ip’ iq) >1.

The accuracy of the procedures decreases in the reverse order (Table I).

TABLE V

Values of f(i_, i,

o0 1q) for procedure 2 (see Eqs (57) and (52))

E\i,, 1 2 3 4 5 6 7 8 9 10 100 1000
lq \

o0

537

371 876 [e'e)

3-18 537 122 0

292 426 706 157 [e)

277 371 537 876 19-1 o0

2:67 339 453 649 105 226 ]

2:€0 3-18 404 537 762 122 260 o0

2:55 303 371 470 621 876 139 295 0

10 2:51 292 349 426 537 706 991 157 329 o)

100 2:22 225 228 231 234 237 240 244 247 251 o©

1 000 219 220 220 220 220 221 221 221 222 222 251 o
o] 219 219 219 219 219 2:19 219 219 219 2:19 2:19 219 =

O 00 NN bWIN -

The lowest value is f(i_, i,

o ) = fiy, o) = 2:19.
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In procedure 1, f,(i,, iq) increases without bounds with i, increasing within the
interval 1 £ i, < i;. As ij is varied over the region of i, < i; < oo, the function
passes from oo over a minimum to co. The minima lie approximately at (i, iy) ~
~ (1, 3), (2, 6), (3,9), (4, 10), etc.; the value of the function in the minima increases
without bounds with increasing arguments, starting from the lowest value of 6-60
which is the optimum value for the analysis. (Other values on the line of minimum
are approximately equal to i, . 6-60.) This increase can be explained in terms of the
fact that as in procedure 1 the (i,, i,) values increase, the result of analysis is deter-
mined from an increased distance from the origin of the coordinate system. The
accuracy of analysis may not be improved if the number of points is increased
(Table I, arrows 4, 5, 6). Therelative standard deviation of analysis (Eq. (52)) decreases
proportionally to 1//n, but f,(i,, i,) can increase more rapidly than \/n, and so the
overall effect can be an enhanced error; for instance (Table 1V), f,(2, 8) = 13'5,
whereas f 1(2, 100) = 78-3. To compensate for the increase in the error of analysis,
the number of points of the isotope dilution function would have to be increase
approximately 34 times. Since for i, — i; we have lim f(iy, i) = oo, the analysis

TABLE VI
Values of f(ip,x'q) for procedure 3 (see Egs (51) and (52))

N

LN

\.
N 1 11 2 3 4 5 6 7 8 9 10 100 1000
1

wa

1 186° 110°
305 290 2:00
219 214 1-72 1-50
191 187 1-61 1-42 1-33
1176 1-74 1-55 1-39 1-30 1-25
168 166 1-51 138 1-29 123 1-20
162 " 1-61 149 137 1-28 122 1-19 1-17
1-58  1-57 1-47 137 1-28 122 1-18 116 1-14
1-55  1:54 1-45 136 129 123 1-19 1-16 1-14 112
153 152 1-44 136 1-29 123 1-19 1-16 113 1-12 1-11
1136 136 1-35 134 1-34 133 132 1:32 132 1-31 130 101
134 134 134 134 134 134 1-34 1-34 1-34 1-34 1-34 128 100
134 134 134 134 1-3¢ 134 134 1-34 134 134 134 134 134 1-00°

4 lim f(ip. ig) = 0; b the values in the column are lim f(ip, i) ¢ the diagonal values are

ip—iq—1 ) ip=1+0
lim f(iy, i) = ig/y — 1; ¢ lim f(i, i) = /(18/10) = 134 ¢ lim  f(i,, i) = 1.
ip—~iq iq—* ip=ip— o
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cannot be evaluated by procedure 1 base on a single point of the isotope dilution
function. The advantage of procedure 1 against procedurse 2 and 3, is that H, how-
ever procedure 1 does not require the knowledge of the sy or A, values is offset to
an extent by the lowered accuracy of analysis.

In procedure 2, the function f,(i,, i,) increases withiut bounds with increasing
i, €{l1,i,> and decreases monotonically down to 2-19 with increasing i, € {i,, ©)
(Table V). The accuracy remains unaffected by replacement of the iy, ipz, ..., ipg
sequence by its ¢-fold multiple, iy, &iyy, ...y Cip Since f,(i, — iy) = oo, the analysis
cannot be evaluated based on a single point of the isotope dilution function. For an
optimum evaluation, the minimum i, and maximum i, values should be chosen,

but only a small improvement (about 1-3 times) in the accuracy is achieved at i, > 5.

In procedure 3, f3(iy, i;) approaches a limit of iy[(i, — 1) with i, — igi, € (1, i>
(Table VI). As the iq € Cip, o0) is increased, f5 decreases form the above value down
to a value of 1-34; at i, > 3, the function passes through minima whose coordinates
are approximately (i,, ig) ~ (4, 7), (5, 7), (6, 8), (7, 9), (8, 10), etc. The f3(i, i) values
in the minima decrease in the range of 1-28 to 1-13, and decrease further to the absolu-
tely lowest value of f(i,, i,) = 1. The local minima, then, are not very deep and the
decrease in the f3(ip, i,) value is statistically insignificant from the analytical point
of view. The analysis can also be evaluated based on a single point of the isotope
dilution function because for i, — iy, lim f3(ip, ig) = ig/(iy — 1). The least squares
method then reduces to the single isotope dilution method. If the analysis corres-
ponding to this point is repeated n times (i.e., both the 4, and the A, activities are
measured n times), the accuracy of determination of x by the least squares method
and by the method of single isotope dilution using the average i, = Ao/A4, will be
identical (see below).

In procedure 3, the isotope dilution function linearizes also in the reversed coordi-
nates (X, — Y, Y = X,); then in Eqs (4) and (5), B is substituted by 1/B, and for
the direct isotope dilution, Eq. (18) is replaced by x = (3.(ix — 1)/»)/2(1/y%), and
for the inverse isotope dilution, Eq. (20) is replaced by x = Y i[>y (i — 1).
The absolute values of the partial derivatives dx/di, in the two cases are expressed
by relation (40) and the error of analysis is expressed by Eq. (42), similarly as when
Egs (18) and (20) hold true.

In procedure 3 with i, = 2, the relative standard deviation of analysis can be ap-
proximated by

See = [(1'5 £ 0-5)//n] s, s (53)

the statistical significance of results being the same on a confidence level of a=0-05.

An advantage of the least squares method using n different points of the isotope
dilution function over the method using n times one and the same point of the func-
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tion lies in the possibility of verifying the linearity of the isotope dilution function
(in the coordinates in question). This linearity is an a priori condition for obtaining
accurate x values in all the above procedures and variants of isotope dilution analysis.

Apart from the least squares approach, the more accurate but also more sophisti-
cated approach of the maximum likelihood method!® can be applied; lower values
of the f(i,, iy) function should then emerge. However, precedure 3 affords values
which are sufficiently near to the absolute minimum value, which is unity (Table VI).

The s,; value, which is a significant parameter describing the accuracy of the result
of analysis, was regarded constant. Other assumptions as to the accuracy of ‘the
activity measurements in relation to the accuracy of analysis can be found in
papers!!12_ A value of s,; = 1% is obtained, for a negligible background, if 20 000
disintegrations are counted for either of the (Ao, 4,) pair, because then s, =
= [(1/20 000) + (1/20 000)]"/2. If the measurements are carried out n times for

a pair (Ao, 4,), the degree of isotope dilution being determined as i, = A,/A,, then
the relative standard deviation of the determination of the degree of isotope dilution is

Ser = Suf/n = 5 - ’ (54)

If, then, x is determined for the i, value by the single isotope dilution method, the
error of analysis, Eq. (45), is

$ex = Laf(ia = D] s = [ia/(ia = DI (1/V/n) 80i- (55)

The error is statistically equal to that obtained in procedure 3 by using the least
squares method (see above).

If, on the other hand, a single measurement is made of 4,, whereas 4, is measured
(2n — 1) times (the total number of measurements of the (A4,, A4,) pair is n), then

Sili = [(8A40]Ao)? + (84,/4,)%/(2n — 1)]V/%; (56)

for n —» oo, difi = (/(2)/2) s;; and s, = [ig/(ia — 1)] (\/(2)/2) s:. Hence, this overall
n-fold measurement of the A,, A, activities has an insignificant effect; the error of
analysis is not lower than 0-7 times that obtained from a single measurement of 4,
and A,.

The above procedures do not cover all the conceivable variants for isotope dilution
analysis'3. The aim of this study was also to introduce a mathematical approach,
which can be of importance for the clasification of the isotope dilution methods.

Thanks are due to Dr T. Liptaj for valuable discussion and assistance in the calculations of the
values for Table 111.
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LIST OF SYMBOLS

X, Yy coordinates of straight lines Y, = a + bX, or Y, = BX

a,b,f=c straight linc parameters (regression coefficients)

k= p0,pl,...,p(n— 1) a set of n non-negative integers

0Z,[Z, relative deviation of Z,(Z, = X,, Y\, ¥y, ii» Ay, 5,)

Sec relative standard deviation of ¢ (¢ = x, i)

Sec mean relative standard deviation of ¢

Q number of repetitions of analysis

b'e amount of substance to be determined (x = —a, —1/a, b, 1/b, B, 1/8)

Vi variable amounts of substance analyzed (i, = f(»,))

iy degree of isotope dilution (iy = Ag/A, = s¢/s;)

iy mean iy values

Ao, Ay activities of equal quantities of substance before and after the isotope
dilution, respectively

Sas S spzcific activities of substance before and after the isotope dilution,
respectively

4 constant

N number of disintegrations counted

9= El'x/sri

lim ngp = f(ip, iq)

n—

P q beginning and end of (i

—

1.
12.
13.

0

s g interval
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